科技动态

您所在的位置:首页 > 科技动态

前沿科技 | 中科院科学家在氧化物界面自旋极化二维电子气研究中取得进展

信息来源:管理员 发布时间:2018/10/9 14:52:47
分享到:

研究发现,当条件合适时,在电子关联氧化物异质界面LaAlO3/SrTiO3(LAO/STO)附近可形成二维电子液体。与常规半导体二维电子气不同,势阱中的电子具有d电子特征,可以占据不同的d轨道,从而带来了一系列新特性例如二维超导电性以及磁性与超导电性共存等。

  大家知道,获得自旋极化二维电子气是自旋电子学研究追求的一个重要目标。但是,由于LaAlO3 和SrTiO3 都是非磁性氧化物,界面磁性通常很弱,难以得到具有明显自旋极化特征的二维电子气。到目前为止,获得自旋极化二维电子气仍然是具有挑战性的课题。

  在SrTiO3-基二维电子气之外,还有一类重要的低维电子体系很少被注意到,就是驻留于KTaO3界面的二维电子气。尽管KTaO3和SrTiO3具有很多相似的物理性质,例如高介电常数和量子顺电性,但是KTaO3 是5d 过渡金属氧化物,且具有强得多的自旋-轨道耦合。特别地,因为5d电子的优异的巡游性,KTaO3 可能对磁性近邻更为敏感。

  最近,中国科学院科学家团队——物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室博士研究生张洪瑞、张慧等在研究员孙继荣指导下,利用磁性绝缘氧化物EuO与KTaO3组合,成功地在EuO-KTaO3界面获得了高自旋极化、高导电性的二维电子气。研究发现二维电子气表现出标志其具有明显磁有序特征的滞后磁电阻效应与反常霍尔效应,且这些效应加温至70 K时仍然可分辨。此前在LaAlO3/SrTiO3 二维电子气中发现的滞后磁电阻效应只出现在0.4K以下的温区。进一步研究发现,EuO/ KTaO3 二维电子气的磁行为与EuO的磁行为之间存在密切关联。密度泛函理论分析表明,界面附近EuO的磁极化的d电子与KTaO3中的电子波函数重叠,导致了后者的自旋极化。这一工作为探索高性能自旋极化二维电子体系提供了新途径,为二维电子液体新奇物理效应的探索拓展了新空间。

  这里,样品制备与北京大学教授韩伟合作完成,密度泛函理论计算工作和物理所教授刘邦贵合作完成。

  这一研究发表在《物理评论快报》(Physical Review Letters)上。该工作得到科技部(2016YFA0300701, 2015CB921104, 2017YFA0206300, 2014CB920902)、国家自然科学基金委项目(11520101002, 11574006, 51590880, 51531008, 11704011)和中科院重点项目的支持。


1.jpg

 图1. KTaO3 衬底上EuO外延薄膜的结构表征。(a) EuOzai在KTaO3 上生长示意图。(b)生长过程反射高能电子衍射图。(c)θ-2θ x-射线衍射谱,表明了理想的外延生长。(d) EuO 薄膜 (204) 反射点的倒空间扫描图像。


2.jpg

图2. EuO/KTaO3 异质结的磁性与电子输运性质。(a) EuO 薄膜的热磁曲线,表明是理想的EuO相,居里温度71 K。 (b) 沿着面内与垂直平面测得的磁化曲线。(c)-(e) 表明EuO/KTaO3 界面形成了理想的二维电子气。


3.jpg

  图3. EuO/KTaO3 二维电子气的磁电输运性为。 (a) 在不同温度下得到的磁电阻,发生了明显的磁滞后,说明存在磁有序。(b) 25K磁电阻曲线的放大。(c) 磁电阻峰值磁场和EuO矫顽力的对应,表明磁畴结构变化引起磁电阻。(d) 横向磁场下的磁电阻。(e) 反常霍尔效应。


4.jpg

 图4. 理论计算的(EuO/KTaO36超晶格模型。 (b)-(c) A-位Ta原子投影态密度,分别对应TaO2/EuO和KO/EuO界面。

版权所有 © 中国科学院 台州应用技术研发与产业化中心 技术支持:台州华顶网络技术有限公司
地址:浙江省台州市椒江区开发大道505中科院大楼 电话(传真):0576-88517035 邮箱:castz2007@163.com